

Characterising Ionic Liquids using the Quartz Crystal Microbalance

Nicola Doy, Rile Ge, Dr Michael Newton, Prof Glen McHale, Dr Paul Roach, Prof Chris Hardacre

School of Science and Technology Nottingham Trent University United Kingdom

Engineering and Physical Sciences Research Council

Introduction

- Quartz Crystal Microbalance (QCM) to obtain Viscosity-density product
- Room Temperature Ionic Liquids
- Experimental Set-up
- Results
 - Fundamental vs. Harmonics
 - Two diluted ionic liquids
 - 19 Pure ionic liquids of varying viscosities
- Conclusions

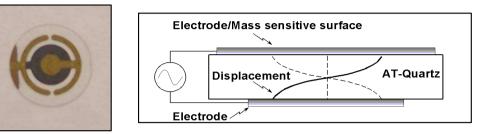
Stored Room temperature Ionic Liquids

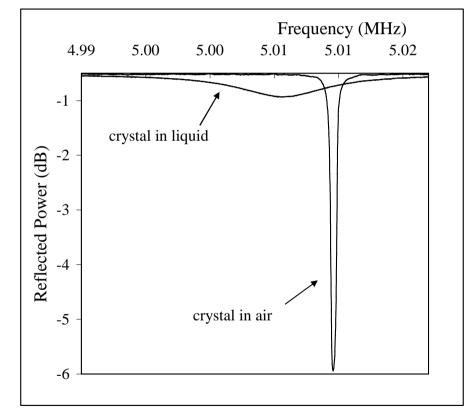
Quartz Crystal Microbalance QCM

Thickness Shear Mode Vibration

Piezoelectric crystal

Frequency given by quartz thickness

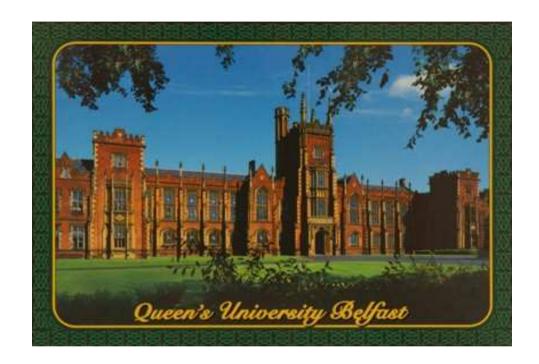

Sharp resonance


Frequency reduces and resonance broadens due to mass in interfacial layer.

 ${\boldsymbol{\sigma}}=2\eta_{\text{lig}}/(\rho_{\text{lig}}\omega)$ where ω =2 πf

Kanazawa & Gordon¹ $\Rightarrow \Delta f \propto -\sqrt{(n\eta\rho)} f^{3/2}$

Frequency is sensitive to the viscosity density product for Newtonian liquids


NTU

Room Temperature Ionic Liquids

Liquids comprised solely of ions which are liquid at room temperature

Useful properties:-

- Low volatility
- Non flammable
- Good liquid range

Experimental Set-up

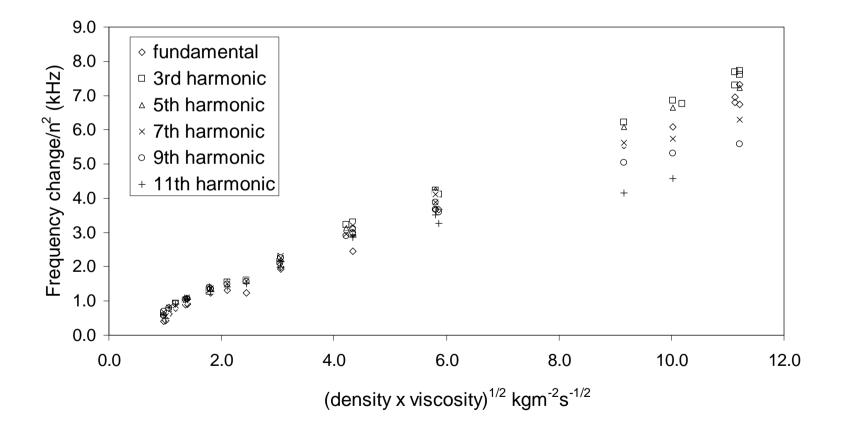
- 5MHz Polished Crystal in a PTFE QCM holder
- Measurements made on 1st, 3rd, 5th, 7th, 9th & 11th harmonic

Experimental Set-up

- 5MHz Polished Crystal in a PTFE QCM holder
- Measurements made on 1st, 3rd, 5th, 7th, 9th & 11th harmonic
- 40µl liquid under argon

Experimental Set-up

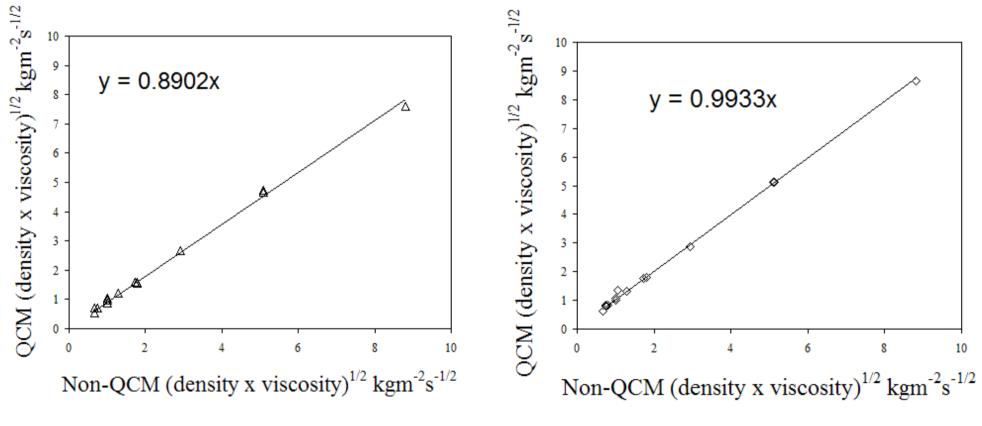
- 5MHz Polished Crystal in a PTFE QCM holder
- Measurements made on 1st, 3rd, 5th, 7th, 9th & 11th harmonic
- 40µl liquid under argon
- Brookfield (MA, USA) DV-II+ Programmable viscometer (1.5ml), and a DMA 4500 Density meter (0.5ml). Karl-Fischer titration for water content measurements



Results: Harmonic data

Kanazawa & Gordon Equation:

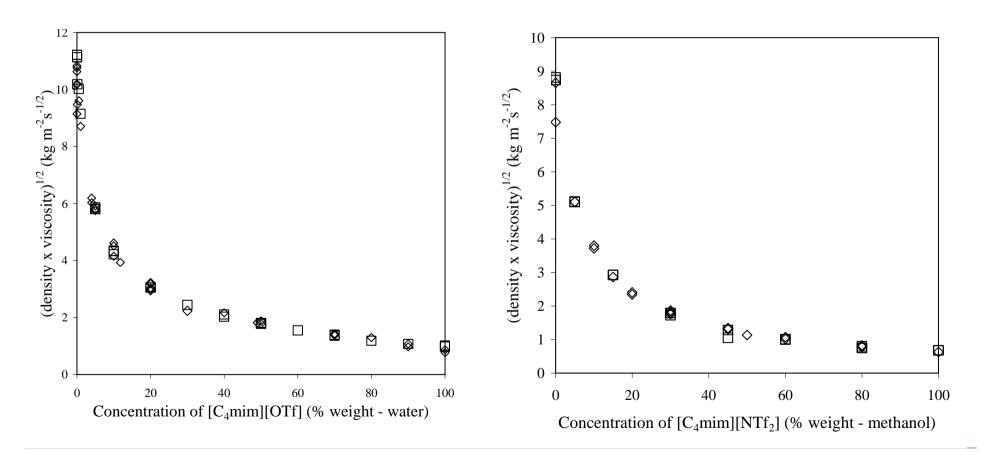
[C₄mim][OTf]


$$\frac{\Delta f}{f_o} = -\left(\frac{nf_o\rho_l\eta_l}{\pi\rho_q\eta_q}\right)^{1/2} \qquad \qquad \frac{\Delta f}{\sqrt{n}} = -cf_o^{3/2}\sqrt{\rho\eta} \qquad \qquad c = 2.46 \times 10^{14} \, \text{kg}^2/\text{m}^4/\text{s}^2$$

Harmonic data agreement

Water miscible – diluted with water

[C₄mim][OTf]


Better agreement with 3rd harmonic

Results – Varying concentration of ILs

3rd Harmonic data

Water miscible IL [C₄mim][OTf]

Water immiscible IL [C₄mim][NTf₂]

> QCM data

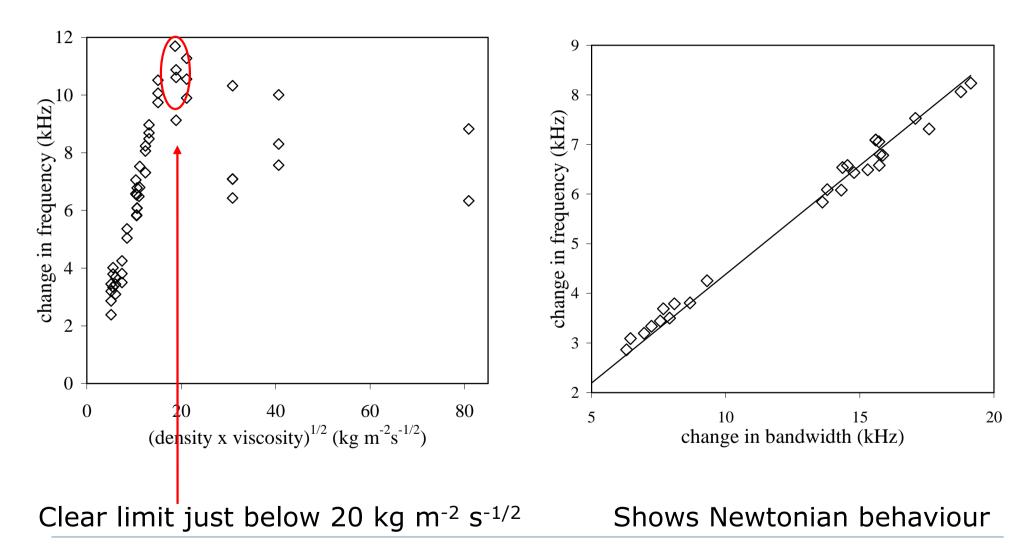
non-QCM data

Pure Ionic Liquids

Water Miscible

 $[C_{2}mim][EtSO_{4}]$ $[C_{4}mim][OTf]$ $[C_{2}mim][SCN]$ $[C_{4}mim][MeSO_{4}]$ $[C_{4}mim][DCA]$ $[C_{4}mim][AcO]$ $[C_{4}mim][AcO]$

Water Immiscible


 $[C_nmim][NTf_2](n=2,4,6,8,10)$ $[C_4mpyrr][NTf_2]$ $[C_4mpyrr][FAP]$ $[P_{6,6,6,14}][NTf_2]$

[C₄mim][OctSO₄]

[C₄mim][TFA] [C₆mim]Cl [C₄mpyrr][TFA] $\sqrt{(\eta\rho)}$ ranges from 5 \rightarrow 80 kgm⁻²s^{-1/2}

19 Pure Ionic Liquids

Conclusions

- QCM can be used to measure the $\sqrt{(\eta \rho)}$ of small volumes of RTILs
- Improved agreement on 3rd Harmonic
- A practical limit of just below 20 kg m⁻² s^{-1/2}
 - when using the Kanazawa & Gordon equation to measure 19 pure ionic liquids.
- Possible use for lab-on a chip: characterising ionic liquids

Acknowledgements

David Parker

EPSRC Engineering and Physical Sciences Research Council

Under grants EP/D03826X/1, EP/D038294/1 and EP/D038995/1.

